
Application Note 27

Reading Modbus Devices and Sending Readings
to the Cloud via HTTP

www.webdyn.com

TITAN

contact@webdyn.com | webdyn.com
V1.0 subject to change | Webdyn © by Flexitron Group2

Reading Modbus Devices
and Sending Readings to the Cloud
via HTTP
1. Scenario Details
TITAN-based devices have all the typical functionalities of 4G/3G/2G routers, as well as a series of added
features that make them one of the most feature-packed routers on the market.

One of the added features is the ability to interrogate Modbus RTU and TCP devices autonomously,
subsequently sending the data to an HTTP, FTP or MQTT server.

As always, this capability will be illustrated using a simple example.

2. Description of the Example
In this example, a TITAN-based device will be configured to collect, store and send the Modbus registers
of 2 PLCs via HTTP. The readings will be done every minute.

The following Modbus registers must be read from PLC1:

1;10;11;12;55;56;69;70;72;73;74;75;76;77;78;79;80;100;101;102;103;104;105;106;107;108;109;
120;121;122;123;124;130;131;132;133;152;153;154;160;161;162;163;164;165;166;170

The following registers must be read from PLC2:

10;11;12;13;14

RS485 INTERNET

PLC1 PLC2

HTTP
Sending data automatically

to server HTTP/HTTPS
via 4G, Ethernet, WiFi…

Modbus Papouch sensor
temperature/humidity

TITAN based
device

This means we need to obtain a map of a number of registers, which are not always consecutive, from
PLC1. PLC2 is easier as we only need 5 consecutive registers

The PLCs are RS485 devices, so we will use Modbus RTU, but the scenario is also perfectly valid for
Modbus TCP devices (with Ethernet) or a mix of both (Modbus TCP and Modbus RTU).

contact@webdyn.com | webdyn.com
V1.0 subject to change | Webdyn © by Flexitron Group3

3. Configuring the Serial Port of the Titan-Based Device to
which the Modbus Devices will be Connected
Let's imagine that the PLCs, which have RS485 ports, have the following serial port configuration:
9600,8,N,1. The first task is to configure the Serial Port2-RS485 section of the TITAN-based device. We
will configure it as shown in the following figure:

contact@webdyn.com | webdyn.com
V1.0 subject to change | Webdyn © by Flexitron Group4

4. Configuring the Titan to Read Modbus Devices
Click on the link: “External Devices > Modbus Devices” and configure the screen as shown below:

We want to read registers 10,11,12,13,14 from PLC 2. All we need to do is enter register 10 in the “Start”
field and 5 in the “Number Words” field (as we want to read 5 registers, from 10 to 14).

PLC1 is more complex, since we have a non-consecutive register map. The different blocks of registers
we need to read will therefore be separated by “;” (semicolons). This means if we want to read registers:

1;10;11;12;55;56;69;70;72;73;74;75;76;77;78;79;80;100;101;102;103;104;105;106;107;108;109;
120;121;122;123;124;130;131;132;133;152;153;154;160;161;162;163;164;165;166;170

contact@webdyn.com | webdyn.com
V1.0 subject to change | Webdyn © by Flexitron Group5

We must enter the following in the Start field (the initial register of each block):

1;10;55;69;72;100;120;130;152;160;170

And, in the "Number Words" field (the number of registers to be read from each block):

1;3;2;2;9;10;5;4;3;7;1

5. Configuring the Logger (communication with an HTTP
server)
The next step is to configure the Logger. This is the data storage and transmission system used by the
TITAN-based device itself. In this example we are going to configure the TITAN-based device to send the
data to an HTTP server (HTTPS, FTP and MQTT / MQTTS can also be used).

The HTTP server has the URL http://www.mydomain.com/set.asp?data= in which the "data" variable will
receive the data in JSON format for each reading taken (timestamp, device ID, etc.).

As can be seen in the following figure, we will access it through the “External Devices > Logger
Configuration” menu and configure the section as follows:

contact@webdyn.com | webdyn.com
V1.0 subject to change | Webdyn © by Flexitron Group6

6. Other Considerations
•	 After configuring the TITAN-based device we will need to reset it so that the new configuration

takes effect and it starts reading and sending.

•	 Each time the TITAN-based device sends a measurement to an HTTP server, it does so using a
JSON object of the following type:

Example JSON for PLC 2

{“IMEI”:” 869101054287764”,”TYPE”:”MODB”,”TS”:”2022-07-15T10:14:02Z”,”ID”:”2”,”A”:”2”,”ST”:”1
0”,”N”:”5”,”V”:[10,11,12,0,0],”P”:”ID- 869101054287764”}

Example JSON for PLC 1

{“IMEI”:” 869101054287764”,”TYPE”:”MODB”,”TS”:”2022-07-15T10:09:01Z”,”ID”:”1”,”A”:”1”,”STX”:[1
,10,55,69,72,100,120,130,152,160,170],”NX”:[1,3,2,2,9,10,5,4,3,7,1], “PX”:[0,1,4,6,8,17,27,32,36,3
9,46], “V”:[1,10,11,12,55,56,69,70,72,73,74,75,76,77,78,79,80,100,101,102,103,104,105,106,107
,108,109,120,121,122,123,124,130,131,132,133,152,153,154,160,161,162,163,164,165,166,170],
“P”:”ID- 869101054287764”}

Where:

	 IMEI: is the unique identifier for the modem

	 TYPE: indicates the type of data (MODB = Modbus reading)

	 TS: is the Timestamp (the time the reading was read)

	 ID: name or identifier of the Modbus device

	 A: Modbus device address

	 ST: the address of the first Modbus register read

	 STX: an array that indicates the address of the first Modbus registers when reading groups of
registers

	 N: indicates the number of words read

	 NX: an array that indicates the number of words read when reading groups of registers

	 PX: an array indicating the position of the initial register of each block within V

	 V: An array containing the data read

	 P: the ID field configured in the Logger

It should be noted that there are significant differences between the data sent by PLC1 and that sent by
PLC2. PLC1 has groups, meaning that the ST and N fields are replaced by STX and NX in the JSON, these
are the arrays in which the initial registers and the number of registers in each block are stored. Similarly,
the PX register indicates the initial position of the group within the array V (PX is not really necessary as
it can be calculated, but it is included to facilitate decoding of the operation on the server).

