VWW\ webdyn

S flexitron grou

TITAN

Application Note 62

Sending data to DEXMA platform

www.webdyn.com

Sending data to DEXMA platform

1. Scenario details

TITAN routers have all the typical functionalities of 4G/3G/2G routers, as well as a series of added
features that make them one of the most feature-packed routers on the market.

One of the added features is the datalogger, where the TITAN router can store a number of types of
records in its non-volatile memory in JSON format. These records can come from Modbus readings,
SERIAL data captures via the RS232 / RS485 ports, or GPS positions, etc. These JSON-type records
are stored in the TITAN router’s internal non-volatile memory and can subsequently be sent to remote
platforms via protocols such as HTTP, HTTPS, MQTT, MQTTS, FTP and FTPS

As mentioned, the TITAN router stores the JSON registers in its internal memory in a proprietary format
by default. This can sometimes be a problem when communicating with platforms that expect to receive
information in a certain format (i.e. a format other than JSON, the one used by the TITAN router).

The “JSON Transformer Function Script” enables the TITAN router to format any JSON object before it is
stored in the internal memory. This means JSON objects can be converted to the appropriate format for
each platform. You don’t really need to convert the data into a JSON format, since it can be converted
into any String format.

In this application note, we will guide you through an entire example of how send to data to the well-
known Dexma platform (https://www.dexma.com/what-is-dexma-platform/), which requires the sent
JSONSs to be in a special format and a series of headers.

In this particular application note, we will assume that 2 registers are to be read from 2 PLCs with
Modbus communications connected to a Webdyn EasyTunnel via their RS485 port.

S) Dexma
— — L= L=
RS485 RS485 I ‘Eﬂ

PLC1 PLC2
@Modbus: 1 @Modbus: 2 Webdyn EasyTunnel Dexma platform

The main aim is for the WebDyn-Easytunnel device to read the Modbus registers with addresses 40000
and 40001 of PLC1, and registers 40000 and 40001 of PLC2, every minute. In both PLCs, register 40000
corresponds to the measured temperature, and register 40001 to the humidity level. The readings taken
must be stored in the internal non-volatile memory of the Webdyn EasyTunnel (in its datalogger), which
must send the read data to the DEXMA platform whenever possible (coverage, IP connectivity, etc.).
Communication with the PLCs is carried out via an RS485 bus with a 9600,8,N,1 configuration

contact@webdyn.com |
WA webdyn | 2 V1.0 subject to change | Webdyn © by Flexitron Group

2. WAN mobile configuration

The Webdyn EasyTunnel must communicate with the DEXMA platform via 4G/3G/2G communications,
so the "Mobile=>Basic Settings" section must be configured correctly according to the SIM card used.

& Mobile Mobile » Basic Settings
& Status ’ ot
< Basic Settings Mobile WAN | Enabled (IP active) V| Enable Wireless WAN interface
Sim Mode | SiM1 V| Sim selection
% Ethernet
¢ Basic Settings
SIM1 APN: [movistar.es | siMcard1apn
* Firewall
¢ Authorized IPs SIM1 Username: |MOVISTAR | SIM Card 1 username
¥ Serial Settings SIM1 Password: | | SIM Card 1 password
@ Serial Porti-RS232 SIM1 Pin: | | siMcard 1P
© Serial Port2-R5485 ’
© SSL Certificates SIM1 Auth: | None v| SIM card 1 authentication
h, v
% External Devices
@ Logger configuration
& ModBus Devices SIM2 APN: | | SIM Card 2 APN
© Generic Serial Device
SIM2 Username: | | SIM Card 2 username
© Temperature Sensor
© IEC102 Meter SIM2 Password: | | SIM Card 2 password
¢ GPS Receiver
SIM2 Pin: | | SIM Card 2 PIN
* Plugins
o Ere SIM2 Auth: |Aulo v| SIM card 2 authentication
+ Other ” B
© AT Command Network selection: | Auto (4G/3GI2G) v| Network selection
& DynDns
& Private DynDns
€ Sms control
= DT le AT DNS selection: | Get DNS from Operator v|
@ Time Servers DNS1: [s.8.838 | Preferred DNs1
¢ Remote Console
© Snmp " DMNS2: 8844 Preferred DNS2 y
A Tararc4 —

3. Configuring the RS485 serial port

The two PLCs will be connected to 9600,8,N,1 via the RS485 serial port, so the "Serial Settings => Serial
Port2-RS485" section must be configured by setting the parameters as shown below.

\Wwebdyn | 3

contact@webdyn.com | webdyn.com
V1.0 subject to change | Webdyn © by Flexitron Group

- Serial Gateway » Com2 Settings

Mobile
© Status 7 0
© Basic Settings Baudrate: | 9600 V| Baudrate of serial port
© Keep Online
Data bits: | 8 V| Number of data bit
#* Ethernet) | |)
. v
© Basic Settings (BT none Parity
) Stop bits: | 1 V| Mumber of stop bits
* Firewall)))
o Authorized 1Ps Timeout ms: |50 | msec without serial data before sending
(default: 50)
e y
serial Settings
& Serial Port1-RS5232
; [Allow local embedded AT commands Ex.: <MTXTUNNEL>AT</MTXTUNNEL>
[Serarportrsass]
= : = [Allow remote embedded AT commands Ex.: <MTXTUNNELR=AT</MTXTUNNELR>
External Devices (0 Allow incoming GSM call (CSD Data Call) Ty e St ST LD (E I e s &

. Nothing. 2G (CSD) network required.
© Logger configuration

© ModBus Devices

© Generic Serial Device . B . -
® Function: Nothing or used by External Device or Script
© Temperature Sensor

© IEC102 Meter
© GPS Receiver

O Function: Serial - IP Gateway (TCP Server)

Plugins
& ErEie TCP Local Port: |2|][]11 | Listening TCP Port (1 ... 65535)
- Check if you need a temporal TCP Client when
Other Temporal client R5222 [data is present at serial port.

© AT Command Temporal client | | DDHHMM. Example: XX2200 starts a temporal

& Erne Wakeup client every day at 22:00

© Private DynDns Temporal client time: |GD | Seconds for temporal client

© Sms control Temporal client |0 | Seconds. Random time for temporal client
© Periodic Autoreset Random Wakeup

) TS EERETS SSL/TLS enabled O SSL/TLS Enabled (SSL Certs needed)

© Remote Console
& Snmn

4. Logger configuration

The next step is to configure the internal datalogger of the WebDyn EasyTunnel. Go to the “External
Devices => Logger configuration” menu. The configuration should be similar to the one shown in the
screenshot below:

contact@webdyn.com | webdyn.com
W webdyn | 4 V1.0 subject to change | Webdyn © by Flexitron Group

“SiflextTonses

& Mobile External Devices » Logger
& Status
4 N
© Basic Settings ID: |IDDUD1 | Optional. Device identification
© Keep Online
Send mode: | FIFO v| Send mode (normally FIFO)
% Ethernet - i o
o Basic Settings Time format: | unix (yyyy-mm-ddTHH:mm:ss V| Time format used in timestamp logger data
. Check for customized json using 'Json
: "
¥ Firewall Use script: 9 Transformer Script’ in Script section.
- Check if you want to send more than one
: "
& Authorized IPs Use array:] JSON per transmition.
. B . Save data in Logger only if date has been set
% Serial Settings Ehesiadates U (check Time Servers)
© Serial Port1-RS5232 h y
© Serial Port2-RS485
© SSL Certificates Communication mode: WEB PLATFORM (HTTP REST)
; 4 N
& _External De e Enabled: Communication mode HTTP enabled
© Logger configuration)
S Moanus bevicas Mode: | HTTPS POST (JSON) v| Method of sending data
& Generic Serial Device Custom parameters: | | Optional. Ex: &a=1&b=2 only for "HTTP
© Temperature Sensor B ’ GET/PUT (PARAMETERS)" modes
© [EC102 Meter Custom header1: |X-Dexcell-Source—Token:toke| Optional. Custom headerl. For example:
& (S T ’ : Content-type;application/json
Custom header2: |CDntent—Type;application."jso| ?gé'ﬁ?f#cﬁg?roﬁfdag' FOT R
% Plugins - -
& B Custom header3: | | Optional. Custom header3.
- . Destination URL. Example:
. 7
¥ Other Server: ||s3.dexcell.com!readmgs_son| www.mydomain.com/set.asp?data=
o AT Command Sarver Usernama: | | Optional. Blank if no server authentication
& DynDns ' required
"‘,r . Optional. Blank if no server authentication
@ Private DynDns Server Password: | | required
© Sms control \, M
The following parameters are particularly important:
J “Time format”: you must select the "unix" format, which is supported by the DEXMA platform.
. “Use script”: you must check this box, because activating it will run the script that you will integrate

later. This script will also convert the standard JSON created by the WebDyn-Easytunnel into a JSON with

the required format supported by the DEXMA platform.

. “Use array”: DEXMA allows data to be sent in an array, so you must also check this box.
U “Custom headerl”: you must enter this as indicated in https://support.dexma.com/hc/en-gb/

articles/360013772759-Usin

-the-insertion-API-to-introduce-data-in-a-gateway the header "x-dexcell-

sorce-token", which is different for each device. It has the following value in this example:

X-Dexcell-Source-Token;token123456789 (fields separated by ";", not ":")

. “Custom header2”: you must enter the following:
Content-Type;application/json (fields separated by “;”, not “:”)
. “Server”: enter the URL of the server here, which will take the following format:

Vv\r\webdyn | 5

contact@webdyn.com | webdyn.com
V1.0 subject to change | Webdyn © by Flexitron Group

is3.dexcell.com/readings?source_key=mac-123456789,

where mac-123456789 will need to be replaced accordingly by the KEY obtained on your DEXMA
platform.

5. Configuring the Modbus section

In this configuration section (“External Devices => Modbus Devices”), you will configure the Modbus
readings to be performed on the 2 PLCs

External Devices » ModBus RTU / TCP

Mobile
& Status
© Basic Settings
¢ Keep Online Enabled: nable Modbus Devices
Ethernet Serial Port: Serial Port 2 v elect the connected serial port if needed
& Basic Settings .
Logger: heck if logger must be used
Firewall Please, configure logger before using this
© Authorized IPs option

Serial Settings

& Serial Port1-RS232
& Serial Port2-RS485
© 5SL Certificates

Dev. name / ID Addr. Command Start@ Num word/bit Reg Type Period

External Devices PLCL 1 0x04 40000 2 WORD 1 Del Test

& Logger configuration
& ModBus Devices PLCZ2 2 0x04 40000 2 WORD 1 Del Test
¢ Generic serial Device

¢ Temperature Sensor
o IEC102 Meter

o GPS Receiver Device name / ID: |F’LCZ | Insert the device name or ID
; Address: |2 | Modbus RTU address or IP:port address
Plugins
@ Generic Command: | 0x04 V| Modbus read command
Other Start: |4D[Jl][] | Address of the first register
© AT Command P
e — Number Words / Bits: |2 | ;Mxt%rldfoz:orzcommand 0x03/0x04. Bits for
© Private DynDns Reg Type: |WORD V| Type of registers for command 0x03/0x04

© Sms control

& Periodic Autoreset Period: | 1 v| Read period (minutes)
© Time Servers

You will also enable the Modbus service by checking the “Enabled” box. You must select “Serial Port 27,
since the reading will be made via the RS485 port. The "Logger" box must also be activated, since the
Modbus registers read from the PLCs must be stored in the internal datalogger of the Webdyn EasyTunnel.

Two devices must also be created, which we have called PLC1 and PLC2 in this example.

In the “address” field, you must indicate the Modbus address of each of the PLCs, so “1” in PLC1 and
“2” in PLC2. The Modbus command you will use to read registers 40000 and 40001 will be 0x04, so
select 0x04 in the “Command” field. The register that will start to be read in both PLCs is register 40000,
so enter 40000 in the “Start” field. The aim is to read 2 Modbus registers from each PLC (40000 and
40001), so enter 2 in the “Number Words” field.

contact@webdyn.com | webdyn.com
W webdyn | 6 V1.0 subject to change | Webdyn © by Flexitron Group

Select “WORD” for the register type (“Reg Type”) and 1 for the “Period”, because we want to receive
readings from the Modbus registers every minute.

6. SCRIPT configuration to convert the JSON generated

by the Webdyn EasyTunnel with a standard format to the
format required for correct communication with the DEXAM
platform

The standard JSON format generated by the Webdyn EasyTunnel with the data read, and which will send
this data to a platform, will take the following format:

[

{“IMEI":"869101054286683”,"TYPE":"MODB”,"1S":"2022-11-11T12:17:00Z",”ID":"PLC1",”A":"1","ST":
"400007,"N"."27,"V":[225,62],”P”:"IDO001"},

{“IMEI":"869101054286683","TYPE":"MODB”,"1S":"2022-11-11T12:17:01Z",”ID":"PLC2","A":"2","ST":
"40000"y"N":"2"'UV":[225,62]'" P";"IDOOOl"}

{“did”:"PLC1”,’sqn":1,"ts”:"2022-11-11T12:20:012”, "values”:[{“p":301,"v":22.5},{“p":401,"v":62}]},
{“did”:"PLC2”,’sqn”:1,"ts”:"2022-11-11T12:20:012”,"values”:[{“p”:301,"v":22.5},{“p":401,"v":62}]}
]

A small SCRIPT must therefore be created to convert the data. Remember that this conversion script
will be run because you previously checked the “Use script” box in the “External Devices” => Logger
Configuration” section

. Check for customized json using 'Json
Use script: Qo F . .
Firewall Transformer Script' in Script section.
Check if you want to send more than one

JSOM per transmition.

. . . Save data in Logger only if date has been set
Serial Settings Check date: U (check Time Servers)

© Serial Port1-RS232
© Serial Port2-RS485
© SSL Certificates

© Authorized IPs Use array:

Communication mode: WEB PLATFORM (HTTP REST)

External Devices Enabled: Communication mode HTTP enabled

© Logger configuration
T ERN TS Mode: | HTTPS POST (JSON) v| Method of sending data

contact@webdyn.com | webdyn.com
WA webdyn | 7 V1.0 subject to change | Webdyn © by Flexitron Group

To enter the code for the data conversion script, go to the “Other => Titan Scripts” menu. The conversion
script must be entered in the “JSON Transformer Function Script” section.

© Private DynDns . ; R ;

o Sms control Other » Titan Scripts v2 » JSON Transformer Function Script
© Periodic Autoreset
& T GErwTs This function script allows to customize json sent by Logger and private DNS

@ Remote Console function getTransformedlson (json)

& Snmp {

© Tacacs+ >~)
& Mgtt var objlson = JSON.parse(json);

@ Http / Https f (obs) ,

© User Permissions if (objIson.TYPE=="HODE")

© Passwords Web UI var objDexmalson=J50N.parse("{}");

© CA Certificates

& Email Config objDexmalson.did=objlson.ID;

. objDexmalson.sqn=1;
— objDexmalson.ts=objlson.TS;
objDexmalson.values=[];
© Connectivity tools objDexmalson.values.push(
© Digital I/O ohJ.DexmaJsoln.\.'alues.push[
objlson=objDexmalson;

el

"p":3@1,"v":0bjlson.V[@]/10});
“pi4al, "v":objlson.V[1]});

© Custom Skin }
& Led Config
@ Syslog return JSON.stringify(objlson);
& Backup / Factory
© Firmware Upgrade A o
© Reboot Ny y
¢ Logout

Save JSON Transformer Script | [Delete JSON Script | [Load Example | [Encrypt Script |

As indicated in the manual, this function to format the JSON is executed BEFORE storing the 1-read data
in the internal datalogger and the JSON becomes a parameter with the standard format of the device,
i.e. for example:

{“IMEI":"869101054286683","TYPE”:"MODB","TS":"2022-11-11T12:17:00Z",”ID":"PLC1","A":"1","ST":
"40000”’ ” N ":"2", ”V”:[225,62] , ” P”:” I Doool"}

The conversion script must convert this previous JSON into the following one to be compatible with the
DEXMA platform.

{“did”:"PLC1”,”sqn":1,"ts":"2022-11-11T12:20:01Z","values™:[{“p":301,"v":22.5},{“p":401,"v":62}]}

This is what the SCRIPT code would look like (with comments added).

//Create a JSON-type object variable, because the "json" variable that receives the //function as an
argument is of type "String”.

var objJson = JSON.parse(json);

contact@webdyn.com | webdyn.com
W webdyn | 8 V1.0 subject to change | Webdyn © by Flexitron Group

//If itis indicated in the original JSON received that it is a Modbus data JSON ...
if (objJson.TYPE=="MODB’)
{

//Create a new JSON object where you will store the data

//converted

var objDexmalson=JSON.parse("{}");

//Use the JSON ID field as the did field of the DEXMA platform
//original (i.e. PLC1 and PLC2)

objDexmalson.did=objlson.ID;

//san field, always 1.

objDexmalson.sqn=1,;

//Use the same timestamp as the original JSON

objDexmalson.ts=objJson.TS;

//Add an array to the JSON where you will store the values for
//temperature and humidity.

objDexmalson.values=(];

//Add parameter 301 to the array, as well as the temperature value, which //corresponds to the
first register read (40000), stored in position //0 of the original JSON array (highlighted in green on the
previous page) //Divide the value by 10 to make it 1 //decimal.

objDexmalson.values.push({"p":301, "v":0bjlson.V[0]/10});

// Add parameter 401 to the array, as well as the humidity value, which corresponds to the
second register read (40001), stored in position 1 of the original JSON array (highlighted in red on the
previous page)

objDexmalson.values.push({"p":401, "v":objlson.V[1]});

contact@webdyn.com | webdyn.com
W webdyn | 9 V1.0 subject to change | Webdyn © by Flexitron Group

//Then, copy the converted JSON to return it as a result
// of the conversion function.
objJson=0bjDexmalson;
}
//Return the JSON in String format as a result of the //conversion function.

return JSON.stringify(objJson);

Once the script has been entered and saved, simply restart the device and everything should work
correctly. If you have any issues, check the device LOGs and whether you need to enter any digital
certificate in the "Other => Ca Certificates” section.

Any questions?

Please direct your enquiries to iotsupport@mtxm2m.com

contact@webdyn.com | webdyn.com
W webdyn | 10 V1.0 subject to change | Webdyn © by Flexitron Group

